Descripción:
Model-based testing (MBT) automates the design and generation of test cases from a model. This process includes model building, test selection criteria, test case generation, and test case execution stages. Current tools support this process at various levels of automation, most of them supporting three out of four stages. Among them is MBT4J, a platform that extends ModelJUnit with several techniques, offering a high level of automation for testing Java applications. In this study, the authors evaluate the efficacy of the MBT4J platform, in terms of the number of test cases generated, errors detected, and coverage metrics. A case study is conducted using two open-source Java systems from public repositories, and 15 different configurations. MBT4J was able to automatically generate five models from the source code. It was also able to generate up to 2025 unique test cases for one system and up to 1044 for the other, resulting in 167 and 349 failed tests, respectively. Transition and transition pair coverage reached 100% for all models. Code coverage ranged between 72 and 84% for the one system and between 59 and 76% for the other. The study found that Greedy and Random were the most effective testers for finding errors.
Tipo de publicación: Journal Article
Publicado en: IET Software
Autores- Leonardo Villalobos-Arias
- Christian Quesada-López
- Alexandra Martinez
- Marcelo Jenkins
Investigadores del CITIC asociados a la publicación
Leonardo Villalobos Arias
Dr. Christian Quesada-López
Dra. Alexandra Martínez Porras
Dr. Marcelo Jenkins Coronas
Proyecto asociado a la publicación
Evaluación de herramientas automatizadas para pruebas de software basadas en modelos